Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Reprod Toxicol ; 111: 135-147, 2022 08.
Article in English | MEDLINE | ID: covidwho-1851996

ABSTRACT

Remdesivir (RDV) is the first antiviral drug to be approved by the US Food and Drug Administration for the treatment of COVID-19. While the general safety of RDV has been studied, its reproductive risk, including embryotoxicity, is largely unknown. Here, to gain insights into its embryotoxic potential, we investigated the effects of RDV on mouse preimplantation embryos cultured in vitro at the concentrations comparable to the therapeutic plasma levels. Exposure to RDV (2-8 µM) did not affect the initiation of blastocyst formation, although the maintenance of the cavity failed at 8 µM due to increased cell death. While exposure to 2-4 µM permitted the cavity maintenance, expressions of developmental regulator genes associated with the inner cell mass (ICM) lineage were significantly diminished. Adverse effects of RDV depended on the duration and timing of exposure, as treatment between the 8-cell to early blastocyst stage most sensitively affected cavity expansion, gene expressions, and cell proliferation, particularly of the ICM than the trophectoderm lineage. GS-441524, a major metabolite of RDV, did not impair blastocyst formation or cavity expansion, although it altered gene expressions in a manner differently from RDV. Additionally, RDV reduced the viability of human embryonic stem cells, which were used as a model for the human ICM lineage, more potently than GS-441524. These findings suggest that RDV is potentially embryotoxic to impair the pluripotent lineage, and will be useful for designing and interpreting further in vitro and in vivo studies on the reproductive toxicity of RDV.


Subject(s)
COVID-19 Drug Treatment , Pregnancy Complications, Infectious , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Blastocyst , Embryonic Development/genetics , Female , Mice , Pregnancy , Pregnancy Complications, Infectious/metabolism
2.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1186964

ABSTRACT

Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.


Subject(s)
Cardiovascular System/cytology , Single-Cell Analysis , Transcriptome/genetics , Animals , COVID-19/genetics , COVID-19/pathology , Cellular Reprogramming/genetics , Embryonic Development/genetics , Humans
3.
Nature ; 589(7843): 630-632, 2021 01.
Article in English | MEDLINE | ID: covidwho-1049956
4.
Stem Cell Rev Rep ; 17(1): 278-284, 2021 02.
Article in English | MEDLINE | ID: covidwho-1009199

ABSTRACT

In addition to a number of scientific and medical questions about SARS-CoV-2 infection that still need to be answered, there is also the question of how this highly virulent virus and COVID-19 disease affect gametogenesis in humans. Even more important is the question of whether the virus can also enter and infect oocytes and possibly alter them in an unknown way, which could also affect the development and status of the human embryo. The answers to these questions are still poorly known, so we reviewed the human oocyte transcriptome and proteome obtained in our previous studies and found that human oocytes from the in vitro fertilization program expressed both the ACE2 and BSG genes and the corresponding ACE2 and BSG proteins. This means that human oocytes possess the molecular 'machinery' to facilitate SARS-CoV-2 entrance and infection. According to various studies, especially in animal models, different viruses can infect oocytes, so infection of the oocyte with SARS-Cov-2 cannot be completely ruled out. A hypothetical model of human oocyte infection with this virus has been proposed.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Basigin/genetics , COVID-19/genetics , Oocytes/virology , COVID-19/virology , Embryonic Development/genetics , Gametogenesis/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Oocytes/growth & development , Oocytes/pathology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL